Niagara2: A Highly Threaded Server-on-a-Chip

Robert Golla
Principal Architect
Sun Microsystems
Contributors

- Jama Barreh
- Jeff Brooks
- William Bryg
- Bruce Chang
- Robert Golla
- Greg Grohoski
- Rick Hetherington
- Paul Jordan

- Mark Luttrell
- Mark Mcpherson
- Shimon Muller
- Chris Olson
- Bikram Saha
- Manish Shah
- Michael Wong
Agenda

• Chip Overview
• Throughput Computing
• Sparc core
• Crossbar
• L2 cache
• Networking
• PCI-Express
• Power
• Status
• Summary
Niagara2 Chip Overview

- 8 Sparc cores, 8 threads each
- Shared 4MB L2, 8-banks, 16-way associative
- Four dual-channel FBDIMM memory controllers
- Two 10/1 Gb Enet ports
- One PCI-Express x8 1.0A port
- 342 mm^2 die size in 65 nm
- 711 signal I/O, 1831 total
Niagara2 Chip Overview

- Full 8x9 crossbar switch
- Connects every core to every L2 bank and vice-versa
- Supports 8 byte writes from a core to a bank
- Supports 16 byte reads from a bank to core
- One port for core to read/write IO
- System interface unit connects networking and IO to memory
For a single thread
- Memory is THE bottleneck to improving performance
 - Commercial server workloads exhibit poor memory locality
- Only a modest throughput speedup is possible by reducing compute time
- Conventional single-thread processors optimized for ILP have low utilizations

With many threads
- It’s possible to find something to execute every cycle
- Significant throughput speedups are possible
- Processor utilization is much higher
Engineering Solutions

• Design Problem
 > Double UltraSparc T1's throughput and throughput/watt
 > Improve UltraSparc T1's FP single-thread and throughput performance
 > Minimize required area for these improvements

• Considered doubling number of UltraSparc T1 cores
 > 16 cores of 4 threads each
 > Takes too much die area
 > No area left for improving FP performance
Engineering Solutions

- Probabilistic Modelling
 - Generate synthetic traces for each thread with an instruction/miss profile that matches TPC-C
 - Schedule ready threads to run on some number of execution units
 - End simulation once simulated distributions are close to actual distributions

- Works very well for simple scalar cores running lots of threads on transactional workloads
 - Within 10 percent of a detailed cycle accurate simulator
 - Detailed cycle accurate simulator not available at beginning of the project
Engineering Solutions

• Decided to increase the number of threads per core and increase execution bandwidth
 > 8 threads per core x 8 cores = 64 threads total
 > 2 EXUs per core
 > More than doubles UltraSparc T1’s throughput
 > Doubling threads is more area efficient than doubling cores
 > Integrate FGU into core pipeline
 – 6 cycle FP latency
 – Threads running FP are non-blocking
 > Enhance Niagara2’s cryptography
 – Added more ciphers
 – Enhanced existing public key support
Throughput Changes

- Niagara2 throughput changes vs. UltraSparc T1
 > Add instruction buffers after L1 instruction cache for each thread
 > Add new pipe stage “pick”
 > Choose 2 threads out of 8 to execute each cycle
 > Increase execution units from 1 to 2
 > Increase set associativity of L1 instruction cache to 8
 > Increase size of fully associative DTLB from 64 to 128 entries
 > Increase L2 banks from 4 to 8
 > 15 percent performance loss with only 4 banks and 64 threads
 > Increase threads from 4 to 8
Sparc Core Block Diagram

- IFU – Instruction Fetch Unit
 - 16 KB I$, 32B lines, 8-way SA
 - 64-entry fully-associative ITLB
- EXU0/1 – Integer Execution Units
 - 4 threads share each unit
 - 8 register windows/thread
 - 160 IRF entries/thread
- LSU – Load/Store Unit
 - 8 threads share LSU
 - 8KB D$, 16B lines, 4-way SA
 - 128-entry fully-associative DTLB
- FGU – Floating-Point/Graphics Unit
 - 8 threads share FGU
 - 32 FRF entries/thread
- SPU – Stream Processing Unit
 - Cryptographic coprocessor
- TLU – Trap Logic Unit
 - Updates machine state, handles exceptions and interrupts
- MMU – Memory Management Unit
 - Hardware tablewalk (HWTW)
 - 8KB, 64KB, 4MB, 256MB pages
Core Pipeline

- 8 stage integer pipeline

- 3-cycle load-use penalty
 - Memory (data translation, access tag/data array)
 - Bypass (late way select, data formatting, data forwarding)

- 12 stage floating-point pipeline

- 6-cycle latency for dependent FP ops
- Longer pipeline for divide/sqrt
Integer/LSU Pipeline

- Instruction cache is shared by all 8 threads
 - Least-recently-fetched algorithm used to select next thread to fetch
 - Each thread is written into thread-specific instruction buffer
 - Decouples fetch from pick
 - Each thread statically assigned to one of 2 thread groups
 - Pick chooses 1 ready thread each cycle within each thread group
 - Picking within each thread group is independent of the other
 - Least-recently-picked algorithm used to select next thread to execute
 - Decode resolves resource hazards not handled during pick
Threads are interleaved between pipeline stages with very few restrictions
- Any thread can be at fetch or cache stage
- Threads are split into 2 thread groups before pick stage

Load/store and floating-point units are shared between all 8 threads
- Up to 1 thread from either thread group can be scheduled on a shared unit
Stream Processing Unit

- Cryptographic coprocessor
 - One per core
 - Runs in parallel w/core at same frequency
- Two independent sub-units
 - Modular Arithmetic Unit
 - RSA, binary and integer polynomial elliptic curve (ECC)
 - Shares FGU multiplier
 - Cipher/Hash Unit
 - RC4, DES/3DES, AES-128/192/256
 - MD5, SHA-1, SHA-256
 - Designed to achieve wire-speed on both 10Gb Ethernet ports
 - Facilitates wire-speed encryption and decryption
- DMA engine shares core’s crossbar port
Crossbar

- Connects 8 cores to 8 L2 Banks and I/O
- Non-blocking, pipelined switch
- 8 load/store requests and 8 data returns can be done at the same time
- Divided into 2 parts
 - PCX – processor to cache
 - CPX – cache to processor
- Arbitration for a target is required
- Priority given to oldest requestor to maintain fairness and order
- Three cycle arbitration protocol
 - Request, arbitrate and then grant
L2 Cache

- 4 MB L2 cache
- 16 way set associative
- 8 L2 banks
- 64 byte line size
- L2 cache is write-back, write-allocate
 - L1 data cache is write-thru
- Support for partial stores
- Coherency is managed by the L2 cache
 - Directories maintained for all 16 L1 caches
- Data transfers between the L2 and a core are done in 16 byte packets
Integrated Networking

- Integrate networking for better overall performance
 - All network data is sourced from and destined to main memory
- Integration minimizes impact of memory
 - Get networking closer to memory to reduce latency
 - Able to take full advantage of higher memory bandwidth
- Eliminates inherent inefficiencies of I/O protocol translation

FBDIMMs

42 GB/s read
21 GB/s write

Pipelined memory accesses tolerate relaxed ordering

L2 L2 L2 L2 L2 L2 L2

Crossbar

C0 C1 C2 C3 C4 C5 C6 C7

NIU (Ethernet)

System Interface Unit

PCI-Ex

10 GE Ethernet

X8 @ 2.5 GHz
Networking Features

- Line Rate Packet Classification (~30M pkt/s)
 > Based on Layer 1/2/3/4 of the protocol stack
- Multiple DMA Engines
 > Matches DMAs to threads
 > Binding flexibility between DMAs and ports
 > 16 transmit + 16 receive DMA channels
- Virtualization Support
 > Supports up to 8 partitions
 > Interrupts may be bound to different hardware threads
- Dual Ethernet ports
 > 2 dual-speed MACs (10G/1G) with integrated serdes
PCI-Express operates at 2.5 Gb/s per lane per direction

- Point-to-point, dual-simplex chip interconnect
- Transfers are in packets with headers and max data payloads from 128B to 512B
- IOMMU supports I/O virtualization and process device isolation by using PCIE’s BDF#

- MSI Support
 - Event queue accumulates MSIs
 - Allows many MSIs to be serviced upon an interrupt

- Total I/O bandwidth is 3-4 GB/s with max payload sizes of 128B to 512B
Power Management

- Limit speculation
 - Sequential prefetch of instruction cache lines
 - Predict conditional branches as not-taken
 - Predict loads hit in the data cache
 - Hardware tablewalk search control

- Extensive clock gating
 - Datapath
 - Control blocks
 - Arrays

- Power throttling
 - 3 external power throttle pins
 - Inject stall cycles into the decode stage based on state of these pins
 - If power_throttle_pins[2:0] == n then n stalls in window of 8, n is 0-7
 - Affects all threads
Niagara2 System Status

- First silicon arrived at the end of May
- Booted Solaris in 5 days
- Current systems are fully operational
- Expect systems to ship in 2H2007
Summary

• Niagara2 combines all major server functions on one chip
 > Integrated networking
 > Integrated PCI-Express
 > Embedded wire-speed cryptography
• Niagara2 has improved performance vs. UltraSparc T1
 > Better integer throughput and throughput/watt (>2x)
 > Improved integer single-thread performance (>1.4x)
 > Better floating-point throughput (>10x)
 > Better floating-point single-thread performance (>5x)
• Enables new generation of power-efficient, fully-secure datacenters
Thank you ...
robert.golla@sun.com