Sensor Networks

- Structural generators
- Power laws
- HOT graphs
- Graph generators
- Assigned reading
 - On Power-Law Relationships of the Internet Topology
 - A First Principles Approach to Understanding the Internet’s Router-level Topology
Outline

• Motivation/Background

• Power Laws

• Optimization Models

• Graph Generation

Why study topology?

• Correctness of network protocols typically independent of topology

• Performance of networks critically dependent on topology
 • e.g., convergence of route information

• Internet impossible to replicate

• Modeling of topology needed to generate test topologies
Internet topologies

Router level topologies reflect physical connectivity between nodes
- Inferred from tools like traceroute or well known public measurement projects like Mercator and Skitter

AS graph reflects a peering relationship between two providers/clients
- Inferred from inter-domain routers that run BGP and public projects like Oregon Route Views
- Inferring both is difficult, and often inaccurate
Hub-and-Spoke Topology

- Single hub node
 - Common in enterprise networks
 - Main location and satellite sites
 - Simple design and trivial routing

- Problems
 - Single point of failure
 - Bandwidth limitations
 - High delay between sites
 - Costs to backhaul to hub

Simple Alternatives to Hub-and-Spoke

- Dual hub-and-spoke
 - Higher reliability
 - Higher cost
 - Good building block

- Levels of hierarchy
 - Reduce backhaul cost
 - Aggregate the bandwidth
 - Shorter site-to-site delay
Points-of-Presence (PoPs)

- Inter-PoP links
 - Long distances
 - High bandwidth
- Intra-PoP links
 - Short cables between racks or floors
 - Aggregated bandwidth
- Links to other networks
 - Wide range of media and bandwidth

Deciding Where to Locate Nodes and Links

- Placing Points-of-Presence (PoPs)
 - Large population of potential customers
 - Other providers or exchange points
 - Cost and availability of real-estate
 - Mostly in major metropolitan areas
- Placing links between PoPs
 - Already fiber in the ground
 - Needed to limit propagation delay
 - Needed to handle the traffic load
Trends in Topology Modeling

<table>
<thead>
<tr>
<th>Observation</th>
<th>Modeling Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Long-range links are expensive</td>
<td>• Random graph (Waxman88)</td>
</tr>
<tr>
<td>• Real networks are not random, but have obvious hierarchy</td>
<td>• Structural models (GT-ITM Calvert/Zegura, 1996)</td>
</tr>
<tr>
<td>• Internet topologies exhibit power law degree distributions (Faloutsos et al., 1999)</td>
<td>• Degree-based models replicate power-law degree sequences</td>
</tr>
<tr>
<td>• Physical networks have hard technological (and economic) constraints.</td>
<td>• Optimization-driven models topologies consistent with design tradeoffs of network engineers</td>
</tr>
</tbody>
</table>

Waxman model (Waxman 1988)

- Router level model
- Nodes placed at random in 2-d space with dimension L
- Probability of edge \((u,v)\):
 - \(ae^{-d/(bL)}\), where \(d\) is Euclidean distance \((u,v)\), \(a\) and \(b\) are constants
- Models locality
Real world topologies

- Real networks exhibit
 - Hierarchical structure
 - Specialized nodes (transit, stub..)
 - Connectivity requirements
 - Redundancy

Transit-stub model (Zegura 1997)

- Router level model
- Transit domains
 - placed in 2-d space
 - populated with routers
 - connected to each other
- Stub domains
 - placed in 2-d space
 - populated with routers
 - connected to transit domains
- Models hierarchy
So...are we done?

• No!
• In 1999, Faloutsos, Faloutsos and Faloutsos published a paper, demonstrating power law relationships in Internet graphs
• Specifically, the node degree distribution exhibited power laws

That Changed Everything.....

Outline

• Motivation/Background
• Power Laws
• Optimization Models
• Graph Generation
A few nodes have lots of connections

\[R(d) = P(D > d) \times \#\text{nodes} \]

Most nodes have few connections

- Router-level graph & Autonomous System (AS) graph
- Led to active research in *degree-based* network models

Source: Faloutsos et al. (1999)
GT-ITM abandoned..

- GT-ITM did not give power law degree graphs
- New topology generators and explanation for power law degrees were sought
- Focus of generators to match degree distribution of observed graph

Inet (Jin 2000)

- Generate degree sequence
- Build spanning tree over nodes with degree larger than 1, using preferential connectivity
 - randomly select node u not in tree
 - join u to existing node v with probability \(\frac{d(v)}{\Sigma d(w)} \)
- Connect degree 1 nodes using preferential connectivity
- Add remaining edges using preferential connectivity
Power law random graph (PLRG)

- **Operations**
 - assign degrees to nodes drawn from power law distribution
 - create kv copies of node v; kv degree of v.
 - randomly match nodes in pool
 - aggregate edges

 ![Graph Diagram]

 may be disconnected, contain multiple edges, self-loops

- contains unique giant component for right choice of parameters

Barabasi model: fixed exponent

- incremental growth
 - initially, m_0 nodes
 - step: add new node i with m edges
- linear preferential attachment
 - connect to node i with probability $k_i / \sum k_j$

 ![Incremental Growth Diagram]

 may contain multi-edges, self-loops
Features of Degree-Based Models

- Degree sequence follows a power law (by construction)
- High-degree nodes correspond to highly connected central “hubs”, which are crucial to the system
- Achilles’ heel: robust to random failure, fragile to specific attack

Does Internet graph have these properties?

- No…(There is no Memphis!)
- Emphasis on degree distribution - structure ignored
- Real Internet very structured
- Evolution of graph is highly constrained
Problem With Power Law

• ... but they're descriptive models!

• No correct physical explanation, need an understanding of:
 • the driving force behind deployment
 • the driving force behind growth

Outline

• Motivation/Background

• Power Laws

• Optimization Models

• Graph Generation
• Consider the explicit design of the Internet
 • Annotated network graphs (capacity, bandwidth)
 • Technological and economic limitations
 • Network performance
• Seek a theory for Internet topology that is explanatory and not merely descriptive.
 • Explain high variability in network connectivity
 • Ability to match large scale statistics (e.g. power laws) is only secondary evidence
Aggregate Router Feasibility

Variability in End-User Bandwidths

Source: Cisco Product Catalog, June 2002
Heuristically Optimal Topology

Mesh-like core of fast, low degree routers

High degree nodes are at the edges.

Comparison Metric: Network Performance

Given realistic technology constraints on routers, how well is the network able to carry traffic?

Step 1: Constrain to be feasible

Step 2: Compute traffic demand

\[x_{ij} \propto B_i B_j \]

Step 3: Compute max flow

\[
\max_{\alpha} \sum_{i,j}^{} x_{ij} = \max_{i,j} \sum_{i,j}^{} \alpha B_i B_j
\]

subject to

\[
\sum_{i,j \in \delta} x_{ij} \leq B_k, \forall k
\]
Likelihood-Related Metric

Define the metric \(L(g) = \sum_{i,j} d_i d_j \) (where \(d_i \) is the degree of node \(i \))

- Easily computed for any graph
- Depends on the structure of the graph, not the generation mechanism
- Measures how "hub-like" the network core is

For graphs resulting from probabilistic construction (e.g. PLRG/GRG),

\[
\text{LogLikelihood (LLH)} \propto L(g)
\]

Interpretation: How likely is a particular graph (having given node degree distribution) to be constructed?

\[
L_{\text{max}} \leq L(g) \leq \frac{1}{P(g)} \leq l(g) = 10^{10}
\]
Structure Determines Performance

<table>
<thead>
<tr>
<th>HOT</th>
<th>PA</th>
<th>PLRG/GRG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(g) = 1.13 \times 10^{12}$</td>
<td>$P(g) = 1.19 \times 10^{10}$</td>
<td>$P(g) = 1.64 \times 10^{10}$</td>
</tr>
</tbody>
</table>

Summary Network Topology

- Faloutsos\(^3\) [SIGCOMM99] on Internet topology
 - Observed many "power laws" in the Internet structure
 - Router level connections, AS-level connections, neighborhood sizes
 - Power law observation refuted later, Lakhina [INFOCOM00]
- Inspired many degree-based topology generators
 - Compared properties of generated graphs with those of measured graphs to validate generator
 - What is wrong with these topologies? Li et al [SIGCOMM04]
 - Many graphs with similar distribution have different properties
 - Random graph generation models don't have network-intrinsic meaning
 - Should look at fundamental trade-offs to understand topology
 - Technology constraints and economic trade-offs
 - Graphs arising out of such generation better explain topology and its properties, but are unlikely to be generated by random processes!
Outline

• Motivation/Background

• Power Laws

• Optimization Models

• Graph Generation

Graph Generation

• Many important topology metrics
 • Spectrum
 • Distance distribution
 • Degree distribution
 • Clustering…

• No way to reproduce most of the important metrics

• No guarantee there will not be any other/new metric found important
dK-series approach

- Look at inter-dependencies among topology characteristics
- See if by reproducing most basic, simple, but not necessarily practically relevant characteristics, we can also reproduce (capture) all other characteristics, including practically important
- Try to find the one(s) defining all others

Average degree $<k>$
Degree distribution $P(k)$

Joint degree distribution $P(k_1, k_2)$
“Joint edge degree” distribution $P(k_1, k_2, k_3)$

3K

3K, more exactly

Wedges: $P_w(k_1, k_2, k_3)$

Triangles: $P_t(k_1, k_2, k_3)$
Definition of dK-distributions

dK-distributions are degree correlations within simple connected graphs of size d.
Nice properties of properties P_d

- **Constructability**: we can construct graphs having properties P_d (dK-graphs)
- **Inclusion**: if a graph has property P_d, then it also has all properties P_i, with $i < d$ (dK-graphs are also iK-graphs)
- **Convergence**: the set of graphs having property P_n consists only of one element, G itself (dK-graphs converge to G)

Rewiring
Graph Reproduction

(a) 0K-graph

(b) 1K-graph

(c) 2K-graph

(d) 3K-graph

(e) original HOT graph
Power Laws

- Faloutsos\(^3\) (Sigcomm'99)
 - frequency vs. degree

Topology from BGP tables of 18 routers
Power Laws

- Faloutsos³ (Sigcomm'99)
 - frequency vs. degree
 - empirical ccdf
 \[P(d>x) \sim x^{-a} \]

topology from BGP tables of 18 routers
Power Laws

- Faloutsos\(^3\) (Sigcomm'99)
 - frequency vs. degree
 - empirical ccdf
 \[P(d>x) \sim x^{-\alpha} \]
 \[\alpha \approx 1.15 \]