
End-to-End Internet Packet Dynamics

Vern Paxson
Network Research Group

Lawrence Berkeley National Laboratory
University of California, Berkeley

vern@ee.lbl.gov

Abstract
We discuss findings from a large-scale study of Internet packet dynamics
conducted by tracing 20,000 TCP bulk transfers between 35 Internet sites.
Because we traced each 100 Kbyte transfer at both the sender and the re-
ceiver, the measurements allow us to distinguish between the end-to-end
behaviors due to the different directions of the Internet paths, which often
exhibit asymmetries. We characterize the prevalence of unusual network
events such as out-of-order delivery and packet corruption; discuss a robust
receiver-based algorithm for estimating “bottleneck bandwidth” that ad-
dresses deficiencies discovered in techniques based on “packet pair”; inves-
tigate patterns of packet loss, finding that loss events are not well-modeled
as independent and, furthermore, that the distribution of the duration of loss
events exhibits infinite variance; and analyze variations in packet transit de-
lays as indicators of congestion periods, finding that congestion periods also
span a wide range of time scales.

1 Introduction
As the Internet grows larger, measuring and characterizing its dy-
namics grows harder. Part of the problem is how quickly the net-
work changes. Another part, though, is its increasing heterogeneity.
It is more and more difficult to measure a plausibly representative
cross-section of its behavior. The few studies to date of end-to-end
packet dynamics have all been confined to measuring a handful of
Internet paths, because of the great logistical difficulties presented
by larger-scale measurement [Mo92, Bo93, CPB93, Mu94]. Con-
sequently, it is hard to gauge how representative their findings are
for today's Internet. Recently, we devised a measurement frame-
work in which a number of sites run special measurement daemons
(“NPDs”) to facilitate measurement. With this framework, the num-
ber of Internet paths available for measurement grows as for
sites, yielding an attractive scaling. We previously used the frame-
work with sites to study end-to-end routing dynamics of
about 1,000 Internet paths [Pa96].
In this study we report on a large-scale experiment to study end-

The work was supported by the Director, Office of Energy Research,
Scientific Computing Staff, of the U.S. Department of Energy under Con-
tract No. DE-AC03-76SF00098.

to-end Internet packet dynamics. Our analysis is based on mea-
surements of TCP bulk transfers conducted between 35 NPD sites
(2). Using TCP—rather than fixed-rate UDP or ICMP “echo”
packets as done in [Bo93, CPB93, Mu94]—reaps significant ben-
efits. First, TCP traffic is “real world,” since TCP is widely used
in today's Internet. Consequently, any network path properties we
can derive from measurements of a TCP transfer can potentially be
directly applied to tuning TCP performance. Second, TCP packet
streams allow fine-scale probing without unduly loading the net-
work, since TCP adapts its transmission rate to current congestion
levels.
Using TCP, however, also incurs two serious analysis headaches.

First, we need to distinguish between the apparently intertwined ef-
fects of the transport protocol and the network. To do so, we de-
veloped tcpanaly, a program that understands the specifics of
the different TCP implementations in our study and thus can sep-
arate TCP behavior from network behavior [Pa97a]. tcpanaly
also forms the basis for the analysis in this paper: after removing
TCP effects, it then computes a wide range of statistics concerning
network dynamics.
Second, TCP packets are sent over a wide range of time scales,

from milliseconds to many seconds between consecutive pack-
ets. Such irregular spacing greatly complicates correlational and
frequency-domain analysis, because a stream of TCP packets does
not give us a traditional time series of constant-rate observations
to work with. Consequently, in this paper we do not attempt these
sorts of analyses, though we hope to pursue them in future work.
See also [Mu94] for previous work in applying frequency-domain
analysis to Internet paths.
In 3 we characterize unusual network behavior: out-of-order

delivery, replication, and packet corruption. Then in 4 we dis-
cuss a robust algorithm for estimating the “bottleneck” bandwidth
that limits a connection's maximum rate. This estimation is cru-
cial for subsequent analysis because knowing the bottleneck rate
lets us determine when the closely-spaced TCP data packets used
for our network probes are correlated with each other. (We note
that the stream of ack packets returned by the TCP data receiver in
general is not correlated, due to the small size and larger spacing
of the acks.) Once we can determine which probes were correlated
and which not, we then can turn to analysis of end-to-end Internet
packet loss (5) and delay (6). In 7 we briefly summarize our
findings, a number of which challenge commonly-held assumptions
about network behavior.

This paper is necessarily terse due to space limitations. A longer ver-
sion is available [Pa97b].

2 The Measurements
We gathered our measurements using the “NPD” measurement
framework we developed and discussed in [Pa96]. 35 sites partic-
ipated in two experimental runs. The sites include educational in-
stitutes, research labs, network service providers, and commercial
companies, in 9 countries. We conducted the first run, , during
Dec. 1994, and the second, , during Nov–Dec. 1995. Thus, dif-
ferences between and give an indication how Internet packet
dynamics changed during the course of 1995. Throughout this pa-
per, when discussing such differences, we always limit discussion
to the 21 sites that participated in both and .
Each measurement was made by instructing daemons running at

two of the sites to send or receive a 100 Kbyte TCP bulk transfer,
and to trace the results using tcpdump [JLM89]. Measurements
occurred at Poisson intervals, which, in principle, results in un-
biased measurement, even if the sampling rate varies [Pa96]. In ,
the mean per-site sampling interval was about 2 hours, with each
site randomly paired with another. Sites typically participated in
about 200 measurements, and we gathered a total of 2,800 pairs of
traces. In , we sampled pairs of sites in a series of grouped mea-
surements, varying the sampling rate from minutes to days, with
most rates on the order of 4–30 minutes. These groups then give
us observations of the path between the site pair over a wide range
of time scales. Sites typically participated in about 1,200 measure-
ments, for a total of 18,000 trace pairs. In addition to the different
sampling rates, the other difference between and is that in

we used Unix socket options to assure that the sending and re-
ceiving TCPs had big “windows,” to prevent window limitations
from throttling the transfer' s throughput.
We limited measurements to a total of 10 minutes. This limit

leads to under-representation of those times during which network
conditions were poor enough to make it difficult to complete a
100 Kbyte transfer in that much time. Thus, our measurements
are biased towards more favorable network conditions. In [Pa97b]
we show that the bias is negligible for North American sites, but
noticeable for European sites.

3 Network Pathologies
We begin with an analysis of network behavior we might consider
“pathological,” meaning unusual or unexpected: out-of-order de-
livery, packet replication, and packet corruption. It is important to
recognize pathological behaviors so subsequent analysis of packet
loss and delay is not skewed by their presence. For example, it is
very difficult to perform any sort of sound queueing delay analysis
in the presence of out-of-order delivery, since the latter indicates
that a first-in-first-out (FIFO) queueing model of the network does
not apply.

3.1 Out-of-order delivery
Even though Internet routers employ FIFO queueing, any time a
route changes, if the new route offers a lower delay than the old
one, then reordering can occur [Mo92]. Since we recorded packets
at both ends of each TCP connection, we can detect network re-
ordering, as follows. First, we remove from our analysis any trace
pairs suffering packet filter errors [Pa97a]. Then, for each arriving
packet , we check whether it was sent after the last non-reordered
packet. If so, then it becomes the new such packet. Otherwise, we

count its arrival as an instance of a network reordering. So, for ex-
ample, if a flight of ten packets all arrive in the order sent except the
last one arrives before all of the others, we consider this to reflect
9 reordered packets rather than 1. Using this definition emphasizes
“late” arrivals rather than “premature” arrivals. It turns out that
counting late arrivals gives somewhat higher (%) numbers
than counting premature arrivals—not a big difference, though.
Observations of reordering. Out-of-order delivery is fairly

prevalent in the Internet. In , 36% of the traces included at least
one packet (data or ack) delivered out of order, while in , 12%
did. Overall, 2.0% of all of the data packets and 0.6% of the
acks arrived out of order (0.3% and 0.1% in). Data packets
are no doubt more often reordered than acks because they are fre-
quently sent closer together (due to ack-every-other policies), so
their reordering requires less of a difference in transit times.
We should not infer from the differences between reordering in
and that reordering became less likely over the course of

1995, because out-of-order delivery varies greatly from site-to-site.
For example, fully 15% of the data packets sent by the “ucol” site
during arrived out of order, much higher than the 2.0% overall
average. As discussed in [Pa96], we do not claim that the individ-
ual sites participating in the measurement framework are plausibly
representative of Internet sites in general, so site-specific behavior
cannot be argued to reflect general Internet behavior.
Reordering is also highly asymmetric. For example, only 1.5%

of the data packets sent to ucol during arrived out of order.
This means a sender cannot soundly infer whether the packets it
sends are likely to be reordered, based on observations of the acks it
receives, which is too bad, as otherwise the reordering information
would aid in determining the optimal duplicate ack threshold to use
for fast retransmission (see below).
The site-to-site variation in reordering coincides with our earlier

findings concerning route flutter among the same sites [Pa96]. We
identified two sites as particularly exhibiting flutter, ucol and the
“wustl” site. For the part of during which wustl exhibited
route flutter, 24% of all of the data packets it sent arrived out of
order, a rather stunning degree of reordering. If we eliminate ucol
and wustl from the analysis, then the proportion of all of the
data packets delivered out-of-order falls by a factor of two. We also
note that in , packets sent by ucolwere reordered only 25 times
out of nearly 100,000 sent, though 3.3% of the data packets sent to
ucol arrived out of order, dramatizing how over long time scales,
site-specific effects can completely change.
Thus, we should not interpret the prevalence of out-of-order de-

livery summarized above as giving representative numbers for the
Internet, but instead form the rule of thumb: Internet paths are
sometimes subject to a high incidence of reordering, but the effect is
strongly site-dependent, and apparently correlated with route flut-
tering, which makes sense since route fluttering provides a mecha-
nism for frequently reordering packets.
We observed reordering rates as high as 36% of all packets arriv-

ing in a single connection. Interestingly, some of the most highly re-
ordered connections did not suffer any packet loss, and no needless
retransmissions due to false signals from duplicate acks. We also
occasionally observed humongous reordering “gaps.” However, the
evidence suggests that these gaps are not due to route changes, but
a different effect. Figure 1 shows a sequence plot exhibiting a mas-
sive reordering event. This plot reflects packet arrivals at the TCP
receiver, where each square marks the upper sequence number of an

See [Pa96] for specifics concerning the sites mentioned in this paper.

Time

Se
qu

en
ce

 #

1.73 1.74 1.75 1.76 1.77 1.78

75
00

0
80

00
0

85
00

0
90

00
0

95
00

01
00

00
0

Figure 1: Out-of-order delivery with two distinct slopes

arriving data packet. All packets were sent in increasing sequence
order.
Fitting a line to the upper points yields a data rate of a little

over 170 Kbyte/sec, which was indeed the true (T1) bottleneck rate
(4). The slope of the packets delivered late, though, is just un-
der 1 Mbyte/sec, consistent with an Ethernet bottleneck. What has
apparently happened is that a router with Ethernet-limited connec-
tivity to the receiver stopped forwarding packets for 110 msec just
as sequence 72,705 arrived, most likely because at that point it pro-
cessed a routing update [FJ94]. It finished between the arrival of
91,137 and 91,649, and began forwarding packets normally again
at their arrival rate, namely T1 speed. Meanwhile, it had queued
35 packets while processing the update, and these it now finally
forwarded whenever it had a chance, so they went out as quickly
as possible, namely at Ethernet speed, but interspersed with new
arrivals.
We observed this pattern a number of times in our data—not

frequent enough to conclude that it is anything but a pathology,
but often enough to suggest that significant momentary increases
in networking delay can be due to effects different from both route
changes and queueing; most likely due to router forwarding lulls.
Impact of reordering. While out-of-order delivery can violate

one's assumptions about the network—in particular, the abstraction
that it is well-modeled as a series of FIFO queueing servers—we
find it often has little impact on TCP performance. One way it
can make a difference, however, is in determining the TCP “dup-
licate ack” threshold a sender uses to infer that a packet requires
retransmission. If the network never exhibited reordering, then as
soon as the receiver observed a packet arriving that created a se-
quence “hole,” it would know that the expected in-sequence packet
was dropped, and could signal to the sender calling for prompt re-
transmission. Because of reordering, however, the receiver does not
know whether the packet in fact was dropped; it may instead just be
late. Presently, TCP senders retransmit if “dups” arrive, a
value chosen so that “false” dups caused by out-of-order delivery
are unlikely to lead to spurious retransmissions.
The value of was chosen primarily to assure that the

threshold was conservative. Large-scale measurement studies were
not available to further guide the selection of the threshold. We
now examine two possible ways to improve the fast retransmit
mechanism: by delaying the generation of dups to better disam-
biguate packet loss from reordering, and by altering the threshold
to improve the balance between seizing retransmission opportuni-
ties, versus avoiding unneeded retransmissions.
We first look at packet reordering time scales to determine how

long a receiver needs to wait to disambiguate reordering from loss.
We only look at the time scales of data packet reorderings, since ack

reorderings do not affect the fast retransmission process. We find
a wide range of times between an out-of-order arrival and the later
arrival of the last packet sent before it. One noteworthy artifact in
the distribution is the presence of “spikes” at particular values, the
strongest at 81 msec. This turns out to be due to a 56 Kbit/sec
link, which has a bottleneck bandwidth of about 6,320 user data
bytes/sec. Consequently, transmitting a 512 byte packet across the
link requires 81.0 msec, so data packets of this size can arrive no
closer, even if reordered. Thus we see that reordering can have
associated with it a minimum time, which can be quite large.
Inspecting the distributions further, we find that a strategy of

waiting 20 msec would identify 70% of the out-of-order deliveries.
For , the same proportion can be achieved waiting 8 msec, due
to its overall shorter reordering times (presumably due to overall
higher bandwidths). Thus, even though the upper end of the distri-
bution is very large (12 seconds!), a generally modest wait serves
to disambiguate most sequence holes.
We now look at the degree to which false fast retransmit sig-

nals due to reordering are actually a problem. We classify each
sequence of dups as either good or bad, depending on whether a re-
transmission in response to it was necessary or unnecessary. When
considering a refinement to the fast retransmission mechanism, our
interest lies in the resulting ratio of good to bad, , controlled by
both the dup ack threshold value we consider, and the waiting
time, , observed by the receiver before generating a dup upon the
advent of a sequence hole.
For current TCP, dups and . For these values,

we find in , , and in , ! The order of
magnitude improvement between and is due to the use in

of bigger windows (2), and hence more opportunity for gen-
erating good dups. Clearly, the current scheme works well. While

improves by about a factor of 2.5, it also diminishes
fast retransmit opportunities by about 30%, a significant loss.
For , we gain about 65–70% more fast retransmit op-

portunities, a hefty improvement, each generally saving a connec-
tion from an expensive timeout retransmission. The cost, however,
is that falls by about a factor of three. If the receiving TCP
waited msec before generating a second dup, then
falls only slightly (30% for , not at all for). Unfortunately,
adding to TCPs coupled with the msec delay re-
quires both sender and receiver modifications, greatly increasing
the problem of deploying the change. Since partial deployment of
only the sender change () significantly increases spurious
retransmissions, we conclude that, due to the size of the Internet' s
installed base, safely lowering is impractical.
We note that the TCP selective acknowledgement (“SACK”) op-

tion, now pending standardization, also holds promise for honing
TCP retransmission [MMSR96]. SACK provides sufficiently fine-
grained acknowledgement information that the sending TCP can
generally tell which packets require retransmission and which have
safely arrived (5.4). To gain any benefits from SACK, however,
requires that both the sender and the receiver support the option,
so the deployment problems are similar to those discussed above.
Furthermore, use of SACK aids a TCP in determining what to re-
transmit, but not when to retransmit. Because these considerations
are orthogonal, investigating the effects of lowering to 2 merits
investigation, even in face of impending deployment of SACK.
We observed one other form of dup ack series potentially leading

to unnecessary retransmission. Sometimes a series occurs for which
the original ack (of which the others are dups) had acknowledged
all of the outstanding data. When this occurs, the subsequent dups

are always due to an unnecessary retransmission arriving at the re-
ceiving TCP, until at least a round-trip time (RTT) after the sending
TCP sends new data. For , these sorts of series are 2-15
times more frequent than bad series, which is why they merit dis-
cussion. They are about 10 times rarer than good series. They occur
during retransmission periods when the sender has already filled all
of the sequence holes and is now retransmitting unnecessarily. Use
of SACK eliminates these series. So would the following heuristic:
whenever a TCP receives an ack, it notes whether the ack covers
all of the data sent so far. If so, it then ignores any duplicates it
receives for the ack, otherwise it acts on them in accordance with
the usual fast retransmission mechanism.

3.2 Packet replication
In this section we look at packet replication: the network delivering
multiple copies of the same packet. Unlike reordering, it is difficult
to see how replication can occur. Our imaginations notwithstand-
ing, it does happen, albeit rarely. We suspect one mechanism may
involve links whose link-level technology includes a notion of re-
transmission, and for which the sender of a packet on the link incor-
rectly believes the packet was not successfully received, so it sends
the packet again.
In , we observed only once instance of packet replication, in

which a pair of acks, sent once, arrived 9 times, each copy com-
ing 32 msec after the last. The fact that two packets were together
replicated does not fit with the explanation offered above for how
a single packet could be replicated, since link-layer effects should
only replicate one packet at a time. In , we observed 65 instances
of the network infrastructure replicating a packet, all of a single
packet, the most striking being 23 copies of a data packet arriving
in a short blur at the receiver. Several sites dominated the repli-
cation events: in particular, the two Trondheim sites, “sintef1”
and “sintef2”, accounted for half of the events (almost all of
these involving sintef1), and the two British sites, “ucl” and
“ukc”, for half the remainder. After eliminating these, we still ob-
served replication events among connections between 7 different
sites, so the effect is somewhat widespread.
Surprisingly, packets can also be replicated at the sender, before

the network has had much of a chance to perturb them. We know
these are true replications and not packet filter duplications, as dis-
cussed in [Pa97a], because the copies have had their TTL fields
decremented. There were no sender-replicated packets in , but
17 instances in , involving two sites (so the phenomenon is
clearly site-specific).

3.3 Packet corruption
The final pathology we look at is packet corruption, in which the
network delivers to the receiver an imperfect copy of the original
packet. For data packets, tcpanaly cannot directly verify the
checksum because the packet filter used in our study only recorded
the packet headers, and not the payload. (For “pure acks,” i.e., ack-
nowledgement packets with no data payload, it directly verifies the
checksum.) Consequently, tcpanaly includes algorithms to infer
whether data packets arrive with invalid checksums, discussed in
[Pa97a]. Using that analysis, we first found that one site, “lbli,”

We have observed traces (not part of this study) in which more than
10% of the packets were replicated. The problem was traced to an improp-
erly configured bridging device.

was much more prone to checksum errors than any other. Since
lbli' s Internet link is via an ISDN link, it appears quite likely that
these are due to noise on the ISDN channels.
After eliminating lbli, the proportion of corrupted packets is

about 0.02% in both datasets. No other single site strongly domi-
nated in suffering from corrupted packets, and in , most of the
sites receiving corrupted packets had fast (T1 or greater) Internet
connectivity, so the corruptions are not primarily due to noisy, slow
links. Thus, this evidence suggests that, as a rule of thumb, the
proportion of Internet data packets corrupted in transit is around
1 in 5,000 (but see below).
A corruption rate of 1 packet in 5,000 is certainly not negligi-

ble, because TCP protects its data with a 16-bit checksum. Con-
sequently, on average one bad packet out of 65,536 will be erro-
neously accepted by the receiving TCP, resulting in undetected data
corruption. If the 1 in 5,000 rate is indeed correct, then about one
in every 300 million Internet packets is accepted with corruption—
certainly, many each day. In this case, we argue that TCP's 16-
bit checksum is no longer adequate, if the goal is that globally in
the Internet there are very few corrupted packets accepted by TCP
implementations. If the checksum were instead 32 bits, then only
about one in packets would be accepted with corruption.
Finally, we note that the data checksum error rate of 0.02% of the

packets is much higher than that measured directly (by verifying the
checksum) for pure acks. For pure acks, we found only 1 corruption
out of 300,000 acks in , and, after eliminating lbli, 1 out of
1.6 million acks in . This discrepancy can be partially addressed
by accounting for the different lengths of data packets versus pure
acks. It can be further reconciled if “header compression” such as
CSLIP is used along the Internet paths in our study [Ja90], as that
would greatly increase the relative size of data packets to that of
pure acks. But it seems unlikely that header compression is widely
used for high-speed links, and most of the inferred data packet
corruptions occurred for T1 and faster network paths.
One possibility is that the packets inferred by tcpanaly infer

as arriving corrupted—because the receiving TCP did not respond
to them in any fashion—actually were never received by the TCP
for a different reason, such as inadequate buffer space. We partially
tested for this possibility by computing corruption rates for only
those traces monitored by a packet filter running on machine sepa-
rate from the receiver (but on the same local network), versus those
running on the receiver's machine. The former resulted in slightly
higher inferred corruption rates, but not significantly so, so if the
TCP is failing to receive the packets in question, it must be due to
a mechanism that still enables the packet filter on the receiving ma-
chine to receive a copy. One can imagine such mechanisms, but it
seems unlikely they would lead to drop rates of 1 in 5,000.
Another possibility is that data packets are indeed much more

likely to be corrupted than the small pure ack packets, because of
some artifact in how the corruption occurs. For example, it may
be that corruption primarily occurs inside routers, where it goes
undetected by any link-layer checksum, and that the mechanism
(e.g., botched DMA, cache inconsistencies) only manifests itself
for packets larger than a particular size.
Finally, we note that bit errors in packets transmitted using

CSLIP can result in surprising artifacts when the CSLIP receiver
reconstructs the packet header—such as introducing the appearance
of in-sequence data, when none was actually sent!
In summary, we cannot offer a definitive answer as to overall

Internet packet corruption rates: but the conflicting evidence that
corruption may occur fairly frequently argues for further study in

order to resolve the question.

4 Bottleneck Bandwidth
In this section we discuss how to estimate a fundamental property
of a network connection, the bottleneck bandwidth that sets the up-
per limit on how quickly the network can deliver the sender's data
to the receiver. The bottleneck comes from the slowest forwarding
element in the end-to-end chain that comprises the network path.
We make a crucial distinction between bottleneck bandwidth and
available bandwidth. The former gives an upper bound on how fast
a connection can possibly transmit data, while the less-well-defined
latter term denotes how fast the connection should transmit to pre-
serve network stability. Thus, available bandwidth never exceeds
bottleneck bandwidth, and can in fact be much smaller (6.3).
We will denote a path's bottleneck bandwidth as . For mea-

surement analysis, is a fundamental quantity because it deter-
mines what we term the self-interference time-constant, .
measures the amount of time required to forward a given packet
through the bottleneck element. If a packet carries a total of bytes
and the bottleneck bandwidth is byte/sec, then:

(1)

in units of seconds. From a queueing theory perspective, is
simply the service time of a -byte packet at the bottleneck link. We
use the term “self-interference” because if the sender transmits two
-byte packets with an interval between them, then the
second one is guaranteed to have to wait behind the first one at the
bottleneck element (hence the use of “ ” to denote “queueing”).
We will always discuss in terms of user data bytes, i.e., TCP
packet payload, and for ease of discussion will assume is constant.
We will not use the term for acks.
For our measurement analysis, accurate assessment of is crit-

ical. Suppose we observe a sender transmitting packets and
an interval apart. Then if , the delays experienced
by and are perforce correlated, and if their de-
lays, if correlated, are not due to self-interference but some other
source (such as additional traffic from other connections, or pro-
cessing delays). Thus, we need to know so we can distinguish
those measurements that are necessarily correlated from those that
are not. If we do not do so, then we will skew our analysis by
mixing together measurements with built-in delays (due to queue-
ing at the bottleneck) with measurements that do not reflect built-in
delays.

4.1 Packet pair
The bottleneck estimation technique used in previous work is based
on “packet pair” [Ke91, Bo93, CC96]. The fundamental idea is
that if two packets are transmitted by the sender with an interval

between them, then when they arrive at the bottleneck
they will be spread out in time by the transmission delay of the first
packet across the bottleneck: after completing transmission through
the bottleneck, their spacing will be exactly . Barring subsequent
delay variations, they will then arrive at the receiver spaced not
apart, but . We then compute via Eqn 1.
The principle of the bottleneck spacing effect was noted in Ja-

cobson's classic congestion paper [Ja88], where it in turn leads to

the “self-clocking” mechanism. Keshav formally analyzed the be-
havior of packet pair for a network of routers that all obey the “fair
queueing” scheduling discipline (not presently used in the Inter-
net), and developed a provably stable flow control scheme based on
packet pair measurements [Ke91]. Both Jacobson and Keshav were
interested in estimating available rather than bottleneck bandwidth,
and for this variations from due to queueing are of primary con-
cern (6.3). But if, as for us, the goal is to estimate , then these
variations instead become noise we must deal with.
Bolot used a stream of packets sent at fixed intervals to probe

several Internet paths in order to characterize delay and loss [Bo93].
He measured round-trip delay of UDP echo packets and, among
other analysis, applied the packet pair technique to form estimates
of bottleneck bandwidths. He found good agreement with known
link capacities, though a limitation of his study is that the measure-
ments were confined to a small number of Internet paths.
Recent work by Carter and Crovella also investigates the utility

of using packet pair in the Internet for estimating [CC96]. Their
work focusses on bprobe, a tool they devised for estimating
by transmitting 10 consecutive ICMP echo packets and recording
the interarrival times of the consecutive replies. Much of the ef-
fort in developing bprobe concerns how to filter the resulting raw
measurements in order to form a solid estimate. bprobe currently
filters by first widening each estimate into an interval by adding
an error term, and then finding the point at which the most intervals
overlap. The authors also undertook to calibrate bprobe by testing
its performance for a number of Internet paths with known bottle-
necks. They found in general it works well, though some paths ex-
hibited sufficient noise to sometimes produce erroneous estimates.
One limitation of both studies is that they were based on mea-

surements made only at the data sender. (This is not an intrinsic
limitation of the techniques used in either study). Since in both
studies, the packets echoed back from the remote end were the
same size as those sent to it, neither analysis was able to distin-
guish whether the bottleneck along the forward and reverse paths
was the same. The bottleneck could differ in the two directions due
to asymmetric routing, for example [Pa96], or because some media,
such as satellite links, can have significant bandwidth asymmetries
depending on the direction traversed [DMT96].
For estimating bottleneck bandwidth by measuring TCP traffic,

a second problem arises: if the only measurements available are
those at the sender, then “ack compression” (6.1) can significantly
alter the spacing of the small ack packets as they return through
the network, distorting the bandwidth estimate. We investigate the
degree of this problem below.
For our analysis, we consider what we term receiver-based

packet pair (RBPP), in which we look at the pattern of data packet
arrivals at the receiver. We also assume that the receiver has full
timing information available to it. In particular, we assume that
the receiver knows when the packets sent were not stretched out by
the network, and can reject these as candidates for RBPP analysis.
RBPP is considerably more accurate than sender-based packet pair
(SBPP), since it eliminates the additional noise and possible asym-
metry of the return path, as well as noise due to delays in generating
the acks themselves. We find in practice this additional noise can
be quite large.

4.2 Difficulties with packet pair
As shown in [Bo93] and [CC96], packet pair techniques often pro-
vide good estimates of bottleneck bandwidth. We find, however,

Time

Se
qu

en
ce

 #

0 2 4 6 8 10 12

0
20

00
0

40
00

0
60

00
0

80
00

01
00

00
0

Figure 2: Bottleneck bandwidth change

four potential problems (in addition to noise on the return path
for SBPP). Three of these problem can often be addressed, but the
fourth is more fundamental.
Out-of-order delivery. The first problem stems from the fact

that for some Internet paths, out-of-order packet delivery occurs
quite frequently (3.1). Clearly, packet pairs delivered out of order
completely destroy the packet pair technique, since they result in

, which then leads to a negative estimate for . Out-of-
order delivery is symptomatic of a more general problem, namely
that the two packets in a pair may not take the same route through
the network, which then violates the assumption that the second
queues behind the first at the bottleneck.
Limitations due to clock resolution. Another problem relates

to the receiver's clock resolution, , meaning the minimum differ-
ence in time the clock can report. can introduce large margins
of error around estimates of . For example, if msec,
then for bytes, packet pair cannot distinguish between

51,200 byte/sec, and .
We had several sites in our study with msec. A tech-

nique for coping with large is to use packet bunch, in which
back-to-back packets are used, rather than just two. Thus,

the overall arrival interval spanned by the packets will be
about times larger than that spanned by a single packet pair,
diminishing the uncertainty due to .
Changes in bottleneck bandwidth. Another problem that any

bottleneck bandwidth estimation must deal with is the possibility
that the bottleneck changes over the course of the connection. Fig-
ure 2 shows a sequence plot of data packets arriving at the receiver
for a trace in which this happened. The eye immediately picks out
a transition between one overall slope to another, just after .
The first slope corresponds to 6,600 byte/sec, while the second is
13,300 byte/sec, and increase of a factor of two. Here, the change
is due to lbli' s ISDN link activating a second channel to double
the link bandwidth, but in general bottleneck shifts can occur due
to other mechanisms, such as routing changes.
Multi-channel bottleneck links. A more fundamental problem

with packet-pair techniques arises from the effects of multi-channel
links, for which packet pair can yield incorrect overestimates even
in the absence of any delay noise. Figure 3 expands a portion of
Figure 2. The slope of the large linear trend in the plot corresponds
to 13,300 byte/sec, as earlier noted. However, we see that the line
is actually made up of pairs of packets. The slope between the pairs
corresponds to a data rate of 160 Kbyte/sec. However, this trace
involved lbli, a site with an ISDN link that has a hard limit of
128 Kbit/sec = 16 Kbyte/sec, a factor of ten smaller! Clearly, an
estimate of Kbyte/sec must be wrong, yet that is what a
packet-pair calculation will yield.

Time

Se
qu

en
ce

 #

8.4 8.6 8.8 9.052
00

0
54

00
0

56
00

0
58

00
0

60
00

0

Figure 3: Enlargement of part of previous figure's right half

What has happened is that the bottleneck ISDN link uses two
channels that operate in parallel. When the link is idle and a packet
arrives, it goes out over the first channel, and when another packet
arrives shortly after, it goes out over the other channel. They don't
queue behind each other! Multi-channel links violate the assump-
tion that there is a single end-to-end forwarding path, with dis-
astrous results for packet-pair, since in their presence it can form
completely misleading overestimates for .
We stress that the problem is more general than the circum-

stances shown in this example. First, while in this example the
parallelism leading to the estimation error came from a single link
with two separate physical channels, the exact same effect could
come from a router that balances its outgoing load across two dif-
ferent links. Second, it may be tempting to dismiss this problem
as correctable by using packet bunch with instead of packet
pair. This argument is not compelling without further investigation,
however, because packet bunch could be more prone to error for
regular bottlenecks; and, more fundamentally, only works
if the parallelism comes from two channels. If it came from three
channels (or load-balancing links), then will still yield mis-
leading estimates.

4.3 Robust bottleneck estimation
Motivated by the shortcomings of packet pair, we developed a sig-
nificantly more robust procedure, “packet bunch modes” (PBM).
The main observation behind PBM is that we can deal with packet-
pair' s shortcomings by forming estimates for a range of packet
bunch sizes, and by allowing for multiple bottleneck values or ap-
parent bottleneck values. By considering different bunch sizes, we
can accommodate limited receiver clock resolutions and the possi-
bility of multiple channels or load-balancing across multiple links,
while still avoiding the risk of underestimation due to noise diluting
larger bunches, since we also consider small bunch sizes. By allow-
ing for finding multiple bottleneck values, we again accommodate
multi-channel (and multi-link) effects, and also the possibility of a
bottleneck change.
Allowing for multiple bottleneck values rules out use of the most

common robust estimator, the median, since it presupposes uni-
modality. We instead focus on identifyingmodes, i.e., local maxima
in the density function of the distribution of the estimates. We then
observe that:
(i) If we find two strong modes, for which one is found only at

the beginning of the connection and one at the end, then we
have evidence of a bottleneck change.

(ii) If we find two strong modes which span the same portion of
the connection, and if one is found only for a packet bunch

KBytes/sec
5 10 50 100 500 1000

0
10

00
20

00
30

00
40

00
50

00
60

00

64 Kbps
128 Kbps

256 Kbps
2T1 3T1

ETHER.5 E1

T1

E1

Figure 4: Histogram of single-bottleneck estimates for

size of and the other only for bunch sizes , then we
have evidence for an -channel bottleneck link.

(iii) We can find both situations, for a link that exhibits both a
change and a multi-channel link, such as shown in Figure 2.

Turning these observations into a working algorithm entails a great
degree of niggling detail, as well as the use of a number of heuris-
tics. Due to space limitations, we defer the particulars to [Pa97b].
We note, though, that one salient aspect of PBM is that it forms
its final estimates in terms of error bars that nominally encompass

% around the bottleneck estimate, but might be narrower if es-
timates cluster sharply around a particular value, or wider if limited
clock resolution prevents finer bounds. PBM always tries bunch
sizes ranging from two packets to five packets. If required by lim-
ited clock resolution or the failure to find a compelling bandwidth
estimate (about one quarter of all of the traces, usually due to lim-
ited clock resolution), it tries progressively larger bunch sizes, up
to a maximum of 21 packets. We also note that nothing in PBM is
specific to analyzing TCP traffic. All it requires is knowing when
packets were sent relative to one another, how they arrived relative
to one another, and their size.
We applied PBM to and for those traces for which

tcpanaly' s packet filter and clock analysis did not uncover any
uncorrectable problems [Pa97a, Pa97b]. After removing lbli,
which frequently exhibited both bottleneck changes and multi-
channel effects, PBM detected a single bottleneck 95–98% of the
time; failed to produce an estimate 0-2% of the time (due to ex-
cessive noise or reordering); detected a bottleneck change in about
1 connection out of 250; and inferred a multi-channel bottleneck in
1-2% of the connections (though some of these appear spurious).
Since all but single bottlenecks are rare, we defer discussion of the
others to [Pa97b], and focus here on the usual case of finding a
single bottleneck.
Unlike [CC96], we do not know a priori the bottleneck band-

widths for many of the paths in our study. We thus must fall
back on self-consistency checks in order to gauge the accuracy
of PBM. Figure 4 shows a histogram of the estimates formed for
. (The estimates are similar, though lower bandwidth esti-

mates are more common.) The 170 Kbyte/sec peak clearly dom-
inates, and corresponds to the speed of a T1 circuit after remov-
ing overhead. . The 7.5 Kbyte/sec corresponds to 64 Kbit/sec
links and the 13–14 Kbyte/sec peak reflects 128 Kbit/sec links.
The 30 Kbyte/sec peak corresponds to a 256 Kbit/sec link, seen
almost exclusively for connections involving a U.K. site. The
1 Mbyte/sec peaks are due to Ethernet bottlenecks, and likely re-
flect T3-connectivity beyond the limiting Ethernet.

Recall that we compute in terms of TCP payload bytes.

We speculate that the 330 Kbyte/sec peak reflects use of two
T1 circuits in parallel, 500 Kbyte/sec reflects three T1 circuits (not
half an Ethernet, since there is no easy way to subdivide an Ether-
net' s bandwidth), and 80 Kbyte/sec comes from use of half of a T1.
Similarly, the 100 Kbyte/sec peak most likely is due to splitting
a single E1 circuit in half. Indeed, we find non-North American
sites predominating these connections, as well exhibiting peaks at
200–220 Kbyte/sec, above the T1 rate and just a bit below E1. This
peak is absent from North American connections.
In summary, we believe we can offer plausible explanations for

all of the peaks. Passing this self-consistency test in turn argues that
PBM is indeed detecting true bottleneck bandwidths.
We next investigate the stability of bottleneck bandwidth

over time. If we consider successive estimates for the same
sender/receiver pair, then we find that 50% differ by less than
1.75%; 80%, by less than 10%; and 98% differ by less than a factor
of two. Clearly, bottlenecks change infrequently.
The last property of bottleneck bandwidth we investigate is sym-

metry: how often is the bottleneck from host to host the same
as that from to ? Bottleneck asymmetries are an important con-
sideration for sender-based “echo” measurement techniques, since
these will observe the minimum bottleneck of the two directions
[Bo93, CC96]. We find that for a given pair of hosts, the median es-
timates in the two directions differ by more than 20% about 20%
of the time. This finding agrees with the observation that Internet
paths often exhibit major routing asymmetries [Pa96]. The bottle-
neck differences can be quite large, with for example some paths
T1-limited in one direction but Ethernet-limited in the other. In
light of these variations, we see that sender-based bottleneck mea-
surement will sometimes yield quite inaccurate results.

4.4 Efficacy of packet-pair
We finish with a look at how packet pair performs compared to
PBM. We confine our analysis to those traces for which PBM
found a single bottleneck. If packet pair produces an estimate lying
within 20% of PBM's, then we consider it agreeing with PBM,
otherwise not.
We evaluate “receiver-based packet pair” (RBPP, per 4.1) by

considering it as PBM limited to packet bunch sizes of 2 packets
(or larger, if needed to resolve limited clock resolutions). We find
RBPP estimates almost always (97–98%) agree with PBM. Thus, if
(1) PBM's general clustering and filtering algorithms are applied to
packet pair, (2) we do packet pair estimation at the receiver, (3) the
receiver benefits from sender timing information, so it can reliably
detect out-of-order delivery and lack of bottleneck “expansion,” and
(4) we are not concerned with multi-channel effects, then packet
pair is a viable and relatively simple means to estimate the bottle-
neck bandwidth.
We also evaluate “sender-based packet pair” (SBPP), in which

the sender makes measurements by itself. SBPP is of consider-
able interest because a sender can use it without any cooperation
from the receiver, making it easy to deploy in the Internet. To
fairly evaluate SBPP, we assume use by the sender of a number
of considerations for forming sound bandwidth estimates, detailed
in [Pa97b]. Even so, we find, unfortunately, that SBPP does not
work especially well. In both datasets, the SBPP bottleneck esti-
mate agrees with PBM only about 60% of the time. About one
third of the estimates are too low, reflecting inaccuracies induced by
excessive delays incurred by the acks on their return. The remain-
ing 5–6% are overestimates (typically 50% too high), reflecting ack

compression (6.1).

5 Packet Loss
In this section we look at what our measurements tell us about
packet loss in the Internet: how frequently it occurs and with what
general patterns (5.1); differences between loss rates of data pack-
ets and acks (5.2); the degree to which loss occurs in bursts (5.3);
and how well TCP retransmission matches genuine loss (5.4).

5.1 Loss rates
A fundamental issue in measuring packet loss is to avoid confus-
ing measurement drops with genuine losses. Here is where the ef-
fort to ensure that tcpanaly understands the details of the TCP
implementations in our study pays off [Pa97a]. Because we can
determine whether traces suffer from measurement drops, we can
exclude those that do from our packet loss analysis and avoid what
could otherwise be significant inaccuracies.
For the sites in common, in , 2.7% of the packets were lost,

while in , 5.2%, nearly twice as many. However, we need to
address the question of whether the increase was due to the use of
bigger windows in (2). With bigger windows, transfers will
often have more data in flight and, consequently, load router queues
much more.
We can assess the impact of bigger windows by looking at loss

rates of data packets versus those for ack packets. Data packets
stress the forward path much more than the smaller ack packets
stress the reverse path, especially since acks are usually sent at
half the rate of data packets due to ack-every-other-packet policies.
On the other hand, the rate at which a TCP transmits data packets
adapts to current conditions, while the ack transmission rate does
not unless an entire flight of acks is lost, causing a sender timeout.
Thus, we argue that ack losses give a clearer picture of overall In-
ternet loss patterns, while data losses tell us specifically about the
conditions as perceived by TCP connections.
In , 2.88% of the acks were lost and 2.65% of the data packets,

while in the figures are 5.14% and 5.28%. Clearly, the bulk
of the difference between the and loss rates is not due to
the use of bigger windows in . Thus we conclude that, overall,
packet loss rates nearly doubled during 1995. We can refine these
figures in a significant way, by conditioning on observing at least
one loss during a connection. Here we make a tacit assumption that
the network has two states, “quiescent” and “busy,” and that we can
distinguish between the two because when it is quiescent, we do not
observe any (ack) loss.
In both and , about half the connections had no ack loss.

For “busy” connections, the loss rates jump to 5.7% in and 9.2%
in . Thus, even in , if the network was busy (using our sim-
plistic definition above), loss rates were quite high, and for they
shot upward to a level that in general will seriously impede TCP
performance.
So far, we have treated the Internet as a single aggregated net-

work in our loss analysis. Geography, however, plays a crucial role.
To study geographic effects, we partition the connections into four
groups: “Europe,” “U.S.,” “Into Europe,” and “Into U.S.” European
connections have both a European sender and receiver, U.S. have
both in the United States. “Into Europe” connections have Eu-
ropean data senders and U.S. data receivers. The terminology is
backwards here because what we assess are ack loss rates, and these

Region Quies Quies Busy Busy
Europe 48% 58% 5.3% 5.9% %
U.S. 66% 69% 3.6% 4.4% %
Into Europe 40% 31% 9.8% 16.9% %
Into U.S. 35% 52% 4.9% 6.0% %
All regions 53% 52% 5.6% 8.7% %

Table 1: Conditional ack loss rates for different regions

are generated by the receiver. Hence, “Into Europe” loss rates re-
flect those experienced by packet streams traveling from the U.S.
into Europe. Similarly, “Into U.S.” are connections with U.S. data
senders and European receivers.
Table 1 summarizes loss rates for the different regions, condi-

tioning on whether any acks were lost (“quiescent” or “busy”). The
second and third columns give the proportion of all connections that
were quiescent in and , respectively. We see that except for
the trans-Atlantic links going into the U.S., the proportion of qui-
escent connections is fairly stable. Hence, loss rate increases are
primarily due to higher loss rates during the already-loaded “busy”
periods. The fourth and fifth columns give the proportion of acks
lost for “busy” periods, and the final column summarizes the rela-
tive change of these figures. None of the busy loss rates is especially
heartening, and the trends are all increasing. The 17% loss rate
going into Europe is particularly glum.
Within regions, we find considerable site-to-site variation in loss

rates, as well as variation between loss rates for packets inbound to
the site and those outbound (5.2). We did not, however, find any
sites that seriously skewed the above figures.
In [Pa97b] we also analyze loss rates over the course of the day,

here omitted due to limited space. We find an unsurprising diurnal
pattern of “busy” periods corresponding to working hours and “qui-
escent” periods to late night and especially early morning hours.
However, we also find that our successful measurements involving
European sites exhibit a definite skew towards oversampling the
quiescent periods, due to effects discussed in 2. Consequently,
the European loss rates given above are underestimates.
We finish with a brief look at how loss rates evolve over time. We

find that observing a zero-loss connection at a given point in time is
quite a good predictor of observing zero-loss connections up to sev-
eral hours in the future, and remains a useful predictor, though not
as strong, even for time scales of days and weeks [Pa97b]. Simi-
larly, observing a connection that suffered loss is also a good predic-
tor that future connections will suffer loss. The fact that prediction
loses some power after a few hours supports the notion developed
above that network paths have two general states, “quiescent” and
“busy,” and provides evidence that both states are long-lived, on
time scales of hours. This again is not surprising, since we dis-
cussed earlier how these states exhibit clear diurnal patterns. That
they are long-lived, though, means that caching loss information
should prove beneficial.
Finally, we note that the predictive power of observing a specific

loss rate is much lower than that of observing the presence of zero
or non-zero loss. That is, even if we know it is a “busy” or a “quies-
cent” period, the loss rate measured at a given time only somewhat
helps us predict loss rates at times not very far (minutes) in the fu-
ture, and is of little help in predicting loss rates a number of hours
in the future.

Per-Connection Packet Loss Rate (%)
0 10 20 30 40

0.0
0.2

0.4
0.6

0.8
1.0

Unloaded data pkts
Loaded data pkts
Acks

Figure 5: loss rates for data packets and acks

5.2 Data packet loss vs. ack loss
We now turn to evaluating how patterns of packet loss differ among
data packets (those carrying any user data) and ack packets. We
make a key distinction between “loaded” and “unloaded” data pack-
ets. A “loaded” data packet is one that presumably had to queue at
the bottleneck link behind one of the connection's previous pack-
ets, while an unloaded data packet is one that we know did not have
to queue at the bottleneck behind a predecessor. We distinguish
between the two by computing each packet' s load, as follows.
Suppose the methodology in 4 estimates the bottleneck band-

width as . It also provides bounds on the estimate, i.e., a min-
imum value and a maximum . We can then determine the
maximum amount of time required for a -byte packet to transit the
bottleneck, namely: sec.
Let be the time at which the sender transmits the th data

packet. We then sequentially associate a maximum load with
each packet (assume for simplicity that is constant). The first
packet' s load is:

Subsequent packets have a load:

thus reflects the maximum amount of extra delay the th packet
incurs due to its own transmission time across the bottleneck link,
plus the time required to first transmit any preceding packets across
the bottleneck link, if will arrive at the bottleneck before they
completed transmission. In queueing theory terms, reflects the
th packet' s (maximum) waiting time at the bottleneck queue, in the
absence of competing traffic from exogenous sources.
If , then we will term packet “loaded,” mean-

ing that it had to wait for pending transmission of earlier packets.
Otherwise, we term it “unloaded.” (We can also develop “central”
estimates rather than maximum estimates using instead of
in this chain of reasoning. These are the values used in 6.3.)
Using this terminology, in both and , about 2/3's of the

data packets were loaded. Figure 5 shows the distributions of loss
rates during for unloaded data packets, loaded data packets, and
acks. All three distributions show considerable probability of zero
loss. We immediately see that loaded packets are much more likely
to be lost than unloaded packets, as we would expect. In addi-
tion, acks are consistently more likely than unloaded packets to be
lost, but generally less likely to be lost than loaded packets, ex-
cept during times of severe loss. We interpret the difference be-
tween ack and data loss rates as reflecting the fact that, while an

Unloaded Data Packet Loss Rate (%)
0 10 20 30 40

0.0
0.2

0.4
0.6

0.8
1.0

Ack Loss Rate (%)
0 20 40 60

0.0
0.2

0.4
0.6

0.8
1.0

Figure 6: Distribution of unloaded data packet and ack
non-zero loss rates (solid), with fitted exponential distribu-
tions (dotted)

ack stream presents a much lighter load to the network than a data
packet stream, the ack stream does not adapt to the current network
conditions, while the data packet stream does, lowering its trans-
mission rate in an attempt to diminish its loss rate.
It is interesting to note the extremes to which packet loss can

reach. In , the largest unloaded data packet loss rate we observed
was 47%. For loaded packets it climbed to 65%, and for acks, 68%.
As we would expect, these connections all suffered egregiously.
However, they did manage to successfully complete their transfers
within their alloted ten minutes, a testimony to TCP's tenacity. For
all of these extremes, no packets were lost in the reverse direction!
Clearly packet loss on the forward and reverse paths is sometimes
completely independent. Indeed, the coefficient of correlation be-
tween combined (loaded and unloaded) data packet loss rates and
ack loss rates in is 0.21, and in , the loss rates appear uncor-
related (coefficient of 0.02), perhaps due to the greater prevalence
of significant routing asymmetry [Pa96].
Further investigating the loss rate distributions, one interesting

feature we find is that the non-zero portions of both the unloaded
and loaded data packet loss rates agree closely with exponential dis-
tributions, while that for acks is not so persuasive a match. Figure 6
shows the distributions of the per-connection loss rates for unloaded
data packets (top) and acks (bottom) in , for those connections
that suffered at least one loss. In both plots we have added an expo-
nential distribution fitted to the mean of the loss rate (dotted). We
see that for unloaded data packets (and also for loaded packets, not
shown), the loss rate distribution is quite close to exponential, with
the only significant disagreement in the lower tail. (This tail is sub-
ject to granularity effects, since for a trace with packets, the mini-

Type of loss

Loaded data pkt 2.8% 4.5% 49% 50%
Unloaded data pkt 3.3% 5.3% 20% 25%
Ack 3.2% 4.3% 25% 31%

Table 2: Unconditional and conditional loss rates

mum non-zero loss rate will be .) The close fit is widespread—not
dominated by a few sites. For ack loss rates, however, we see that
the fit is considerably less compelling.
While striking, interpreting the fit to the exponential distribution

is difficult. If, for example, packet loss occurs independently and
with a constant probability, then we would expect the loss rate to
reflect a binomial distribution, but that is not what we observe. (We
also know from the results in 5.1 that there is not a single Internet
packet loss rate, or anything approaching such a situation.)
It seems likely that the better exponential fit for data loss rates

than ack loss rates holds a clue. The most salient difference be-
tween the transmission of data packets and that of acks is that the
rate at which the sender transmits data packets adapts to the current
network conditions, and furthermore it adapts based on observing
data packet loss. Thus, if we passively measure the loss rate by
observing the fate of a connection's TCP data packets, then we in
fact are making measurements using a mechanism whose goal is
to lower the value of what we are measuring (by spacing out the
measurements). Consequently, we need to take care to distinguish
between measuring overall Internet packet loss rates, which is best
done using non-adaptive sampling, versus measuring loss rates ex-
perienced by a transport connection's packets—the two can be quite
different.
Finally: the link between the adaptive sampling and the strik-

ing exponential distribution eludes us. We suspect it will prove an
interesting area for further study.

5.3 Loss bursts
In this section we look at the degree to which packet loss occurs in
bursts of more than one consecutive loss.
The first question we address is the degree to which packet losses

are well-modeled as independent. In [Bo93], Bolot investigated this
question by comparing the unconditional loss probability, , with
the conditional loss probability, , where is conditioned on
the fact that the previous packet was also lost. He investigated the
relationship between and for different packet spacings ,
ranging from 8 msec to 500 msec. He found that approaches
as increases, indicating that loss correlations are short-lived, and
concluded that “losses of probe packets are essentially random as
long as the probe traffic uses less than 10% of the available capacity
of the connection over which the probes are sent.” The path he
analyzed, though, included a heavily loaded trans-Atlantic link, so
the patterns he observed might not be typical.
Table 2 summarizes and for the different types of packets

and the two datasets. Clearly, for TCP packets we must discard the
assumption that loss events are well-modeled as independent. Even
for the low-burden, relatively low-rate ack packets, the loss proba-
bility jumps by a factor of seven if the previous ack was lost. We
would expect to find the disparity strongest for loaded data packets,
as these must contend for buffer with the connection's own pre-

Outage Duration (sec)

0.5 1.0 5.0 10.0 50.0

0.0
0.2

0.4
0.6

0.8
1.0 N1 Data

N1 Acks
N2 Data
N2 Acks

Figure 7: Distribution of packet loss outage durations ex-
ceeding 200 msec

Ack Outage Duration (sec)

P(
X

>=
 x)

5 10 50 100 500

0.0
00

1
0.0

01
0

0.0
10

0
0.1

00
0

1.0
00

0

Figure 8: Log-log complementary distribution plot of ack
outage durations

vious packets, as well as any additional traffic, and indeed this is
the case. We find the effect least strong for unloaded data packets,
which accords with these not having to contend with the connec-
tion's previous packets, and having their rate diminished in the face
of previous loss.
The relative differences between and in Table 2 all exceed

those computed by Bolot by a large factor. His greatest observed
ratio of to was about 2.5:1. However, his were all much
higher than those in Table 2, even for msec, suggesting
that the path he measured differed considerably from a typical path
in our study.
Given that packet losses occur in bursts, the next natural question

is: how big? To address this question, we group successive packet
losses into outages. Figure 7 shows the distribution of outage dura-
tions for those lasting more than 200 msec (the majority). We see
that all four distributions agree fairly closely.
It is clear from Figure 7 that outage durations span several or-

ders of magnitude. For example, 10% of the ack outages were
33 msec or shorter (not shown in the plot), while another 10% were
3.2 sec or longer, a factor of a hundred larger. Furthermore, the up-
per tail of the distributions are consistent with Pareto distributions.
Figure 8 shows a complementary distribution plot of the duration
of ack outages, for those lasting more than 2 sec (about 16%
of all the outages). Both axes are log-scaled. A straight line on
such a plot corresponds to a Pareto distribution. We have added a
least-squares fit. We see the long outages fit quite well to a Pareto
distribution with shape parameter , except for the extreme

It is interesting that loaded packets are unconditionally less likely to be
lost than unloaded packets. We suspect this reflects the fact that lengthy
periods of heavy loss or outages will lead to timeout retransmissions, and
these are unloaded. Note that these statistics differ from the distributions
shown in Figure 5 because those are for per-connection loss rates, while
Table 2 summarizes loss probabilities over all the packets in each dataset.

Type of RR Solaris Solaris Other Other
% all packets 6% 6% 1% 2%
% retrans. 66% 59% 26% 28%
Unavoidable 14% 33% 44% 17%
Coarse feed. 1% 1% 51% 80%
Bad RTO 84% 66% 4% 3%

Table 3: Proportion of redundant retransmissions (RRs) due
to different causes

upper tail, which is subject to truncation because of the 600 sec
limit on connection durations (2).
A shape parameter means that the distribution has infinite

variance, indicating immense variability. Pareto distributions for
activity and inactivity periods play key roles in some models of
self-similar network traffic [WTSW95], suggesting that packet loss
outages could contribute to how TCP network traffic might fit to
ON/OFF-based self-similarity models.
Finally, we note that the patterns of loss bursts we observe might

be greatly shaped by use of “drop tail” queueing. In particular,
deployment of Random Early Detection could significantly affect
these patterns and the corresponding connection dynamics [FJ93].

5.4 Efficacy of TCP retransmission
The final aspect of packet loss we investigate is how efficiently TCP
deals with it. Ideally, TCP retransmits if and only if the retrans-
mitted data was indeed lost. However, the transmitting TCP lacks
perfect information, and consequently can retransmit unnecessarily.
We analyzed each TCP transmission in our measurements to deter-
mine whether it was a redundant retransmission (RR), meaning that
the data sent had already arrived at the receiver, or was in flight and
would successfully arrive. We classify three types of RRs:

unavoidable because all of the acks for the data were lost;

coarse feedback meaning that had earlier acks conveyed finer in-
formation about sequence holes (such as provided by SACK),
then the retransmission could have been avoided; and

bad RTO meaning that had the TCP simply waited longer, it
would have received an ack for the data (bad retransmission
timeout).

Table 3 summarizes the prevalence of the different types of
RRs in and . We divide the analysis into Solaris 2.3/2.4
TCP senders and others because in [Pa97a] we identified the So-
laris 2.3/2.4 TCP as suffering from significant errors in comput-
ing RTO, which the other implementations do not exhibit. We see
that in , a fair proportion of the RRs were unavoidable. (Some
of these might however have been avoided had the receiving TCP
generated more acks.) But for , only about 1/6 of the RRs for
non-Solaris TCPs were unavoidable, the difference no doubt due to
's use of bigger windows (2) increasing the mean number of

acks in flight.
“Coarse feedback” RRs would presumably all be fixed using

SACK, and these are the majority of RRs for non-Solaris TCPs.
Solaris TCPs would not immediately benefit from SACK because
many of their RRs occur before a SACK ack could arrive, anyway.
“Bad RTO” RRs indicate that the TCP's computation of the

retransmission timeout was erroneous. These are the bane of

Solaris 2.3/2.4 TCP, as noted above. Fixing the Solaris RTO calcu-
lation eliminates about 4-5% of all of the data traffic generated by
the TCP. For non-Solaris TCPs, bad RTO RRs are rare, providing
solid evidence that the standard TCP RTO estimation algorithm de-
veloped in [Ja88] performs quite well for avoiding RRs. A separate
question is whether the RTO estimation is overly conservative. A
thorough investigation of this question is complex because a revised
estimator might take advantage of both higher-resolution clocks and
the opportunity to time multiple packets per flight. Thus, we leave
this interesting question for future work.
In summary: ensuring standard-conformant RTO calculations

and deploying the SACK option together eliminate virtually all of
the avoidable redundant retransmissions. The remaining RRs are
rare enough to not present serious performance problems.

6 Packet Delay
The final aspect of Internet packet dynamics we analyze is that of
packet delay. Here we focus on network dynamics rather than trans-
port protocol dynamics. Consequently, we confine our analysis to
variations in one-way transit times (OTTs) and omit discussion of
RTT variation, since RTT measurements conflate delays along the
forward and reverse path.
For reasons noted in 1, we do not attempt frequency-domain

analysis of packet delay. We also do not summarize the marginal
distribution of packet delays. Mukherjee found that packet delay
along a particular Internet path is well-modeled using a shifted
gamma distribution, but the parameters of the distribution vary from
path to path and over the course of the day [Mu94]. Since we have
about 1,000 distinct paths in our study, measured at all hours of the
day, and since the gamma distribution varies considerably as its pa-
rameters are varied, it is difficult to see how to summarize the delay
distributions in a useful fashion. We hope to revisit this problem in
future work.
Any accurate assessment of delay must first deal with the issue

of clock accuracy. This problem is particularly pronounced when
measuring OTTs since doing so involves comparing measurements
from two separate clocks. Accordingly, we developed robust algo-
rithms for detecting clock adjustments and relative skew by inspect-
ing sets of OTT measurements, described in [Pa97b]. The analysis
in this section assumes these algorithms have first been used to re-
ject or adjust traces with clock errors.
OTT variation was previously analyzed by Claffy and colleagues

in a study of four Internet paths [CPB93]. They found that mean
OTTs are often not well approximated by dividing RTTs in half,
and that variations in the paths' OTTs are often asymmetric. Our
measurements confirm this latter finding. If we compute the inter-
quartile range (75th percentile minus 25th) of OTTs for a connec-
tion's unloaded data packets versus the acks coming back, in the
coefficient of correlation between the two is an anemic 0.10, and in

it drops to 0.006.

6.1 Timing compression
Packet timing compression occurs when a flight of packets sent over
an interval arrives at the receiver over an interval .
To first order, compression should not occur, since the main mecha-
nism at work in the network for altering the spacing between pack-
ets is queueing, which in general expands flights of packets (cf.

We note that this problem has been fixed in Solaris 2.5.1.

Time

Se
qu

en
ce

 #

1.2 1.3 1.4 1.5 1.6 1.7

35
00

0
40

00
0

45
00

0
50

00
0

55
00

0

Figure 9: Data packet timing compression

4.1). However, compression can occur if a flight of packets is at
some point held up by the network, such that transmission of the
first packet stalls and the later packets have time to catch up to it.
Zhang et al. predicted from theory and simulation that acks

could be compressed (“ack compression”) if a flight arrived at a
router without any intervening packets from cross traffic (hence, the
router' s queue is draining) [ZSC91]. Mogul subsequently analyzed
a trace of Internet traffic and confirmed the presence of ack com-
pression [Mo92]. His definition of ack compression is somewhat
complex since he had to infer endpoint behavior from an observa-
tion point inside the network. Since we can compute from our data
both and , we can instead directly evaluate the presence
of compression. He found compression was correlated with packet
loss but considerably more rare. His study was limited, however, to
a single 5-hour traffic trace.
Ack compression. To detect ack compression, for each group of

at least 3 acks we compute:

(2)

where and are the receiver and sender's clock resolutions,
so is a conservative estimate of the degree of compression. We
consider a group compressed if . We term such a group
a compression event. In , 50% of the connections experienced
at least one compression event, and in , 60% did. In both, the
mean number of events was around 2, and 1% of the connections
experienced 15 or more. Almost all compression events are small,
with only 5% spanning five or more acks. Finally, a significant mi-
nority (10–25%) of the compression events occurred for dup acks.
These are sent with less spacing between them than regular acks
sent by ack-every-other policies, so it takes less timing perturbation
to compress them.
Were ack compression frequent, it would present two problems.

First, as acks arrive they advance TCP's sliding window and “clock
out” new data packets at the rate reflected by their arrival [Ja88].
For compressed acks, this means that the data packets go out faster
than previously, which can result in network stress. Second, sender-
based measurement techniques such as SBPP (4.1) can misin-
terpret compressed acks as reflecting greater bandwidth than truly
available. Since, however, we find ack compression relatively rare
and small in magnitude, the first problem is not serious, and the
second can be dealt with by judiciously removing upper extremes
from sender-based measurements.

Indeed, it has been argued that occasional ack compression is benefi-
cial, since it provides an opportunity for self-clocking to discover newly-
available bandwidth.

Data packet timing compression. For data packet timing com-
pression, our concerns are different. Sometimes a flight of data
packets is sent at a high rate due to a sudden advance in the re-
ceiver's offered window. Normally these flights are spread out by
the bottleneck and arrive at the receiver with a distance between
each packet (4). If after the bottleneck their timing is compressed,
then use of Eqn 2 will not detect this fact unless they are com-
pressed to a greater degree than their sending rate. Figure 9 illus-
trates this concern: the flights of data packets arrived at the receiver
at 170 Kbyte/sec (T1 rate), except for the central flight, which ar-
rived at Ethernet speed. However, it was also sent at Ethernet speed,
so for it, .
Consequently, we consider a group of data packets as “com-

pressed” if they arrive at greater than twice the upper bound on
the estimated bottleneck bandwidth, . We only consider groups
of at least four data packets, as these, coupled with ack-every-other
policies, have the potential to then elicit a pair of acks reflecting the
compressed timing, leading to bogus self-clocking.
These compression events are rarer than ack compression, occur-

ring in only 3% of the traces and 7% of those in . We were
interested in whether some paths might be plagued by repeated
compression events due to either peculiar router architectures or
network dynamics. Only 25–30% of the traces with an event had
more than one, and just 3% had more than five, suggesting that such
phenomena are rare. But those connections with multiple events are
dominated by a few host pairs, indicating that the phenomenon does
occur repeatedly, and is sometimes due to specific routers.
It appears that data packet timing compression is rare enough not

to present a problem. That it does occur, though, again highlights
the necessity for outlier-filtering when conducting timing measure-
ments. (It also has a measurement benefit: from the arrival rate of
the compressed packets, we can estimate the downstream bottle-
neck rate.)

6.2 Queueing time scales
In this section we briefly develop a rough estimate of the time scales
over which queueing occurs. If we take care to eliminate suspect
clocks, reordered packets, compressed timing, and traces exhibiting
TTL shifts (which indicate routing changes), then we argue that the
remaining measured OTT variation reflects queueing delays.
We compute the queueing variation on the time scale as fol-

lows. We partition the packets sent by a TCP into intervals of
length . For each interval, let and be the number of
successfully-arriving packets in the left and right halves of the inter-
val. If either is zero, or if or vice versa, then we reject the
interval as containing too fewmeasurements or too much imbalance
between the halves. Otherwise, let and be the median OTTs
of the two halves. We then define the interval' s queueing variation
as . Finally, let be the median of over
all such intervals.
Thus, reflects the “average” variation we observe in packet

delays over a time scale of . By using medians, this estimate is ro-
bust in the presence of noise due to non-queueing effects, or queue-
ing spikes. By dividing intervals in two and comparing only varia-
tion between the two halves, we confine to only variations on
the time scale of . Shorter or longer lived variations are in general
not included.
We now analyze for different values of , confining our-

selves to variations in ack OTTs, as these are not clouded by self-
interference and adaptive transmission rate effects. The question is:

N1
N2

0.0
16

0.0
32

0.0
64

0.1
28

0.2
56

0.5
12

1.0
24

2.0
48

4.0
96

8.1
92

16
.38

4

32
.76

8

65
.53

6

0.1
5

0.1
0

0.0
5

0.0
0.0

5
0.1

0

Time Scale of Maximum Sustained Variation (sec)

No
rm

ali
ze

d P
ro

po
rtio

n

Figure 10: Proportion (normalized) of connections with
given timescale of maximum delay variation ()

are their particular ' s on which most queueing variation occurs?
If so, then we can hope to engineer for those time scales. For ex-
ample, if the dominant is less than a connection's RTT, then it is
pointless for the connection to try to adapt to queueing fluctuations,
since it cannot acquire feedback quickly enough to do so.
For each connection, we range through msec to

find , the value of for which is greatest. reflects the
time scale for which the connection experienced the greatest OTT
variation. Figure 10 shows the normalized proportion of the con-
nections in and exhibiting different values of . Normaliza-
tion is done by dividing the number of connections that exhibited
with the number that had durations at least as long as . For both
datasets, time scales of 128–2048 msec primarily dominate. This
range, though, spans more than an order of magnitude, and also
exceeds typical RTT values. Furthermore, while less prevalent,
values all the way up to 65 sec remain common, with having a
strong peak at 65 sec (which appears genuine; perhaps due to pe-
riodic outages caused by router synchronization [FJ94], eliminated
by the end of 1995).
We summarize the figure as indicating that Internet delay vari-

ations occur primarily on time scales of 0.1-1 sec, but extend out
quite frequently to much larger times.

6.3 Available bandwidth
The last aspect of delay variation we look at is an interpretation of
how it reflects the available bandwidth. In 5.2 we developed a
notion of data packet ' s “load,” , meaning how much delay it in-
curs due to queueing at the bottleneck behind its predecessors, plus
its own bottleneck transmission time . Since every packet re-
quires to transit the bottleneck, variations in OTT do not include
, but will reflect . Term this value , and let denote

the difference between packet ' s measured OTT and the minimum
observed OTT.
If the network path is completely unloaded except for the con-

nection's load itself (no competing traffic), then we should have
, i.e., all of ' s delay variation is due to queueing behind its

predecessors. More generally, define

then reflects the proportion of the packet' s delay due to the con-
nection's own loading of the network. If , then all of the delay
variation is due to the connection's own queueing load on the net-
work, while, if , then the connection's load is insignificant
compared to that of other traffic in the network.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

Inferred Available Bandwidth

%

Inferred Available Bandwidth
0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

Figure 11: Density and cumulative distribution of
inferred available bandwidth ()

More generally, reflects the resources consumed
by the connection, while

reflects the resources consumed by the compet-
ing connections.
Thus, captures the proportion of the total resources that were

consumed by the connection itself, and we interpret as reflecting
the available bandwidth. Values of close to 1 mean that the entire
bottleneck bandwidth was available, and values close to 0 mean that
almost none of it was actually available.
Note that we can have even if the connection does not

consume all of the network path's capacity. All that is required is
that, to the degree that the connection did attempt to consume net-
work resources, they were readily available. This observation pro-
vides the basis for hoping that we might be able to use to estimate
available bandwidth without fully stressing the network path.
We can gauge how well truly reflects available bandwidth by

computing the coefficient of correlation between and the connec-
tion's overall throughput (normalized by dividing by the bottleneck
bandwidth). For , this is 0.44, while for , it rises to 0.55.
Figure 11 shows the density and cumulative distribution of for
. Not surprisingly, we find that Internet connections encounter a

broad range of available bandwidth. As is generally the case with
Internet characteristics, a single figure like this can oversimplify
the situation. We note, for example, that confining the evaluation
of to European connections results in a sharp leftward shift in
the density, indicating generally less available bandwidth, while for
U.S. connections, the density shifts to the right. Furthermore, for
paths with higher bottleneck bandwidths, we generally find lower
values of , reflecting that such paths tend to be shared among more
competing connections. Finally, we note that the predictive power
of tends to be fairly good. On average, a given observation of
will be within 0.1 of later observations of for the same path, for
time periods up to several hours.

The depressed density at reflects a measurement bias [Pa97b].

7 Conclusions
Several conclusions emerge from our study:

With due diligence to remove packet filter errors and TCP ef-
fects, TCP-based measurement provides a viable means for
assessing end-to-end packet dynamics.
We find wide ranges of behavior, such that we must exercise
great caution in regarding any aspect of packet dynamics as
“typical.”
Some common assumptions such as in-order packet delivery,
FIFO bottleneck queueing, independent loss events, single
congestion time scales, and path symmetries are all violated,
sometimes frequently.

When implemented correctly, TCP's retransmission strategies
work in a sufficiently conservative fashion.

The combination of path asymmetries and reverse-path noise
render sender-only measurement techniques markedly infe-
rior to those that include receiver-cooperation.

This last point argues that when the measurement of interest con-
cerns a unidirectional path—be it for measurement-based adaptive
transport techniques such as TCP Vegas [BOP94], or general In-
ternet performance metrics such as those in development by the
IPPM effort [A+96]—the extra complications incurred by coordi-
nating sender and receiver are worth the effort.

8 Acknowledgements
This work would not have been possible without the efforts of the
many volunteers who installed the Network Probe Daemon at their
sites. I am indebted to:

G. Almes, J. Alsters, J-C. Bolot, K. Bostic, H-W. Braun,
D. Brown, R. Bush, B. Camm, B. Chinoy, K. Claffy,
P. Collinson, J. Crowcroft, P. Danzig, H. Eidnes,
M. Eliot, R. Elz, M. Flory, M. Gerla, A. Ghosh, D. Grun-
wald, T. Hagen, A. Hannan, S. Haug, J. Hawkinson,
TR Hein, T. Helbig, P. Hyder, A. Ibbetson, A. Jack-
son, B. Karp, K. Lance, C. Leres, K. Lidl, P. Lining-
ton, S. McCanne, L. McGinley, J. Milburn, W. Mueller,
E. Nemeth, K. Obraczka, I. Penny, F. Pinard, J. Polk,
T. Satogata, D. Schmidt, M. Schwartz, W. Sinze,
S. Slaymaker, S. Walton, D. Wells, G. Wright, J. Wro-
clawski, C. Young, and L. Zhang.

I am likewise indebted to Keith Bostic, Evi Nemeth, Rich
Stevens, George Varghese, Andres Albanese, Wieland Holfelder,
and Bernd Lamparter for their invaluable help in recruiting NPD
sites. Thanks, too, to Peter Danzig, Jeff Mogul, and Mike Schwartz
for feedback on the design of NPD.
This work greatly benefited from discussions with Domenico

Ferrari, Sally Floyd, Van Jacobson, Mike Luby, Greg Minshall,
John Rice, and the comments of the anonymous reviewers. My
heartfelt thanks.

References
[A+96] G. Almes et al, “Framework for IP Provider Metrics,” In-

ternet draft, ftp://ftp.isi.edu/internet-drafts/draft-ietf-bmwg-ippm-
framework-00.txt, Nov. 1996.

[Bo93] J-C. Bolot, “End-to-End Packet Delay and Loss Behavior in the
Internet,” Proc. SIGCOMM '93, pp. 289-298, Sept. 1993.

[BOP94] L. Brakmo, S. O'Malley and L. Peterson, “TCP Vegas: New
Techniques for Congestion Detection and Avoidance,” Proc. SIG-
COMM '94, pp. 24-35, Sept. 1994.

[CC96] R. Carter and M. Crovella, “Measuring Bottleneck Link Speed in
Packet-Switched Networks,” Tech. Report BU-CS-96-006, Com-
puter Science Department, Boston University, Mar. 1996.

[CPB93] K. Claffy, G. Polyzos and H-W. Braun, “Measurement Consider-
ations for Assessing Unidirectional Latencies,” Internetworking:
Research and Experience, 4 (3), pp. 121-132, Sept. 1993.

[DMT96] R. Durst, G. Miller and E. Travis, “TCP Extensions for Space
Communications,” Proc. MOBICOM '96, pp. 15-26, Nov. 1996.

[FJ93] S. Floyd and V. Jacobson, “Random Early Detection Gateways
for Congestion Avoidance”, IEEE/ACM Transactions on Net-
working, 1(4), pp. 397-413, Aug. 1993.

[FJ94] S. Floyd and V. Jacobson, “The Synchronization of Periodic
Routing Messages,” IEEE/ACM Transactions on Networking,
2(2), pp. 122-136, Apr. 1994.

[Ja88] V. Jacobson, “Congestion Avoidance and Control,” Proc. SIG-
COMM '88, pp. 314-329, Aug. 1988.

[JLM89] V. Jacobson, C. Leres, and S. McCanne, tcpdump, available via
anonymous ftp to ftp.ee.lbl.gov, June 1989.

[Ja90] V. Jacobson, “Compressing TCP/IP headers for low-speed se-
rial links,” RFC 1144, Network Information Center, SRI Inter-
national, Menlo Park, CA, February, 1990.

[Ke91] S. Keshav, “A Control-Theoretic Approach to Flow Control”,
Proc. SIGCOMM '91, pp. 3-15, Sept. 1991.

[MMSR96] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP Se-
lective Acknowledgment Options,” RFC 2018, DDNNetwork In-
formation Center, Oct. 1995.

[Mo92] J. Mogul, “Observing TCP Dynamics in Real Networks,” Proc.
SIGCOMM '92, pp. 305-317, Aug. 1992.

[Mu94] A. Mukherjee, “On the Dynamics and Significance of Low Fre-
quency Components of Internet Load,” Internetworking: Re-
search and Experience, Vol. 5, pp. 163-205, December 1994.

[Pa96] V. Paxson, “End-to-End Routing Behavior in the Internet,” Proc.
SIGCOMM '96, pp. 25-38, Aug. 1996.

[Pa97a] V. Paxson, “Automated Packet Trace Analysis of TCP Implemen-
tations,” Proc. SIGCOMM '97, Sep. 1997.

[Pa97b] V. Paxson, “Measurements and Analysis of End-to-End Internet
Dynamics,” Ph.D. dissertation, University of California, Berke-
ley, April 1997.

[WTSW95] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson, “Self-
Similarity Through High-Variability: Statistical Analysis of Eth-
ernet LAN Traffic at the Source Level,” Proc. SIGCOMM '95,
pp. 100-113, Sept. 1995.

[ZSC91] L. Zhang, S. Shenker, and D. Clark, “Observations on the Dy-
namics of a Congestion Control Algorithm: The Effects of Two-
Way Traffic,” Proc. SIGCOMM '91, pp. 133-147, Sept. 1991.

